On Square Roots of M-Matrices
نویسندگان
چکیده
The question of the existence and uniqueness of an M-matrix which is a square root of an M-matrix is discussed. The results are then used to derive some new necessary and sufficient conditions for a real matrix with nonpositive off diagonal elements to be an M-matrix.
منابع مشابه
On the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملOn square roots and norms of matrices with symmetry
The present work concerns the algebra of semi-magic square matrices. These can be decomposed into matrices of specific rotational symmetry types, where the square of a matrix of pure type always has a particular type. We examine the converse problem of categorising the square roots of such matrices, observing that roots of either type occur, but only one type is generated by the functional calc...
متن کاملComputing the square roots of matrices with central symmetry
For computing square roots of a nonsingular matrix A, which are functions of A, two well known fast and stable algorithms, which are based on the Schur decomposition of A, were proposed by Björk and Hammarling [3], for square roots of general complex matrices, and by Higham [10], for real square roots of real matrices. In this paper we further consider (the computation of) the square roots of m...
متن کاملComputation of the q-th roots of circulant matrices
In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.
متن کاملOn computing complex square roots of real matrices
We present an idea for computing complex square roots of matrices using only real arithmetic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1982